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\ OF DYNAMIC TEAR TEST SPECIMENS

| "
l S. Mall, A.S. Kobayashi and Y. Urabe*
Department of Mechanical Engineering

PSR ST University of Washington

Seattle, Washington 98195

ABSTRACT

Dynamic photoelasticity and dynamic finite element methods were used to
study the transient response of dynamic tear test (DTT) specimen of a brittle
material, Homalite-100. The dynamic stress intensity factors obtained from
dynanic photoelasticity and dynamic finite element analysis were generally in
excellent agreement with each other and showed that the NRL procedure of computing
the dynamic fracture initiation toughness from strain gage measurements near the
crack tip was reasonably accurate. Dynamic fracture toughness versus crack velo-

city relations were also obtained.

INTRODUCTION
In a previous paper [1], one of the authors used dynamic photoelasticity

to analyze an enlarged photoelastic model of the dynamic tear test specimen (DTT)
developed by the Naval Research Laboratories (NRL)[2,3,4]. This DTT specimen,
which is a dynamically loaded three-point bend specimen, developed full thickness
cleavage fracture without sidegrooving and is an ASTM proposed fracture specimen
for assessing potential brittle fracture characteristics of ductile materials.
Brittle fracture of the NRL type DTT specimen in the previous dynamic photoelas-
ticity investigation was modeled by 356x88.9 mm specimens machined from 9.5 mm

thick Homalite-100 plates subjected to an impact loading of 1.83 to 3.62 N-m

* Currently on leave from Takasago Technical Institute, Mitsubishi Heavy
Industries, Takasago, Japan.
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and led to the following four conclusions:

1. Fracture initiated after the first buildup of impact force in the hammer
tip.

2. Dynamic fracture toughness, KID’ decreases after reaching a maximum value
as the crack propagated towards the impact site.

3. Dynamic tear energy which was computed from the measured dynamic fracture
toughness varied with the sharpness of the starter crack.

4. The average dynamic energy release rate,!’&o, was approximately equal to

the critical strain energy release rate,i&lc, of the Homalite-100 plate.

In a subsequent reevaluation of this DTT test result [5], dynamic fracture
initiation toughness, Kld’ was estimated to be approximately equal to the static
fracture toughness, ch’ in contradiction with the generally expected decrease
in KId under impact loading. Such possible decrease in KId for the strain rate-
sensitive Homalite-100 plates was conjectured from the observed trend in ductile
metals with lesser strain rate sensitivity than Homalite-100 plates.

Results of the above dynamic photoelastic investigation presented some new
concepts for the fracture dynamic response of DTT specimens as well as identified
areas in which further investigation is necessary to clarify points of contro-
versy. As a result, in this study DTT specimens machined from Homalite-100 plates
were reanalyzed by dynamic photoelasticity as well as by the newly developed
dynamic finite element method. The numerical technique was also used to compute
the dynamic strains adjacent to the crack tip prior to and immediately after the
onset of crack propagation and the dynamic stress intensity factor at the onset
of crack propagation, KId' was then estimated through Loss' static procedure [3].
In the following some details of the cxperimental and numerical approaches as

well as typical results are given.
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EXPERIMENTAL SETUP

The experimental program consisted of dynamic photoelastic analysis of
Homalite-100 models of DTT specimens where the emphasis in this study was to
record the dynamic photoelastic patterns before and after crack initiation in
order to interpolate the fracture toughness for dynamic loading at the instant
of crack propagation. The system used to obtain a history of fracture initiation
in a DTT specimen consisted of: (i) Cranz-Schardin 16 spark-gap camera and
associated polariscope [1], (ii) a drop weight testing machine, (iii) a load
transducer on the hammer tup and (iv) a circuitry to trigger the series of events
for recording the photoelastic patterns, the load-time history and reference
timings of each spark-gap firing.

The drop weight testing machine consisted of a free-falling weight with
an instrumented striker tup and a rigidly supported anvil that provided loading
of a simple three-point loaded beam. The drop weight varied from 2.75 to 27.5
kg (6 to 60 1bs.). Sliding friction between the drop weight and guiderails was
minimized by two Thompson Super-12 ball bushings installed in the drop weight
housing. The drop distance of the striker tup was 146 cm (5.75 in) and the
impact velocity was about 150 cm/second (60 in/second).

The most critical component in impact testing is the load transducer which
measures the load history prior to and after fracture. Such load history is
particularly important in providing the necessary time-dependent boundary condi-
tions for subsequent numerical analysis. A load-time record, however, was diffi-
cult to obtain due to the electric noise generated by the spark-gaps [6]. A
four-arm strain gage bridge was mounted on a thinner central portion of the
tup as shown in Figure 1. In addition, this tup was insulated with a tight
fitting steel cover to shield the strain gages from external noise. The strain

gage bridge output versus applied load relation were obtained by statically

———— s A——— N ot




calibrating the tup in a testing machine.

Another crucial problem involved in the DTT test was the triggering of
this 16-spark-gap 1ight source such that the dynamic events before the after
crack propagation could be recordeda. Such triggering was accomplished by closing
a circuit between the tup and a thin copper strip which was glued to the impact
area of the specimen. Contact between the tup and the strip triggered a delay
signal from a Tektronix 555 oscilloscope which in turn triggered the 1ight source
delay system. In addition, a crack wire consisting of silver paint in front of

the crack was used to record the initiation of crack propagation.

DTT TEST SPECIMEN

Configuration of the Homalite-100 DTT specimen is shown in Figure 2, and was
selected in accordance with the recommended ASTM standard for a 16 mm (5/8
in) thick DTT specimen with the exception that the Homalite-100 photoelastic
specimen had a nominal thickness of 9.5 mm (3/8 1in).

In the tests reported previously [1], an initial saw crack in the DTT
specimen was chiseled with a sharp blade to simulate a natural starter crack. The
same sawed and chiseled starter crack did not produce predictable crack initiation
time, which was crucial in this study for pretriggering the dynamic polariscope
prior to crack propagation. The sawed and chiseled crack was replaced with a
fatigue crack which produced reproducible crack initiation time. Thus all photo-
elastic specimens were fatiguecrackedat a low load corresponding to approximately
10 percent of the nominal fracture toughness.

Dynamic material calibration tests were carried out to determine the
stress-fringe constant, modulus of elasticity and Poisson's ratio at various
strain rates as well as the static fracture toughness. A split Hopkinson bar

system [7] with test specimens of 9.5x9.5x254 mms or 9.5x9.5x381 mms were used.
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Table 1 shows the results thus obtained.
The static fracture toughness of the Homalite-100 sheets were determined
by standard ASTM E-399 compact tension specimens with initial fatigued crack

length of approximately 19 mm. Static fracture toughness, KI » Shown in the

c
table was obtained by the formula also shown in ASTM E-399 standards [8].

DYNAMIC FINITE ELEMENT ANALYSIS

The dynamic finite element analysis used in this investigation has been
dsecribed in detail in Reference [9]. The finite element breakdown of the
photoelastic DTT specimen used in this investigation is shown in Figure 1.
Initially, 300 nodes and 294 elements were used but later the finite element
breakdown was reduced to 169 nodes and 144 elements in order to conserve computer
time. A state of plane strain was assumed in this analysis.

The recorded load-time history, which is the necessary time dependent
boundary condition for this finite element analysis, was modeled as an average
effective load transmitted to the specimen with a time phase difference of 10
microseconds to account for the time stress wave to propagate from the point

of impact to the strain gage location on the tup.

RESULTS OF DYNAMIC PHOTOELASTIC EXPERIMENTS

A total of four dynamic photoelastic experiments were conducted. Figure 2
shows typical enlargements of two frames out of the 16 dynamic photoelastic
patterns of one of the tests.

Figure 3 shows the dynamic stress intensity factor before and after crack
initiation in the four DTT tests. The interpolated fracture initiation toughness
under dynamic loading, KId' in these DTT test specimens were within + 3 percent

of the static fracture toughness, KIc’ of 415 kPa/m (378 psi/in). This
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coincidence in dynamic fracture toughness, de, at the onset of crack propagation
and static fracture toughness, ch' was predicted in Reference [5] through extra-
polation of six DTT test results due to the lack of the first dynamic iso-
chromatic fringes prior to crack propagation. Both extrapolated results of
Reference [5] and the present results show that the duration of the impact loading
before crack propagation was of the order of 150-200 microseconds.

Figure 3 also shows that the dynamic stress intensity factor during crack
propagation, i.e. dynamic fracture toughness, KID’ increased gradually as the
crack ran through approximately sixty percent of the specimen width and then

decreased to about fifty percent of K, _ as the crack propagated into the static

Ic
compression zone. Such low KID indicates that the minimum resistance to dynamic
crack propagation, Klm’ is equal to or less than fifty percent of the fracture
toughness. This continued decrease of the dynamic stress intensity factor in
contrast with the monotonously increasing static stress intensity factor in a
static three-point bend specimen [9] in the initially compressive zone of the DTT
specimens was also observed in Reference [1].

Variation in crack velocity, c, along the specimen width is shown in Figure 4.
The maximum crack velocity recorded was 317 m/sec (12,500 in/sec), or c/c1 = 0.12,
which was considerably lcwer than the previously recorded maximum velocity of
457 m/sec (18,000 in/sec), or c/c] = 0.19 for a sharp crack and 622 m/sec
(24,500 in/sec) or c/c] = 0.26 for a blunt crack [1]. Crack velocities in the
new series of four DTT specimens gradually decresed or remained practically con-
stant up to seventy-five percent of the width of the specimen and then suddenly

drop as the crack penetrated into the initially compressed zone. This variation

of crack velocity along the width of the specimen agrees well with the dynamic

fracture analysis of a beam under constant bending moment by Freund and Herrman [11].
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Cracks in these DTT specimens curved as they approached the point of
impact, indicating the pre-existing lower state of compressive stress which
causes the crack to turn temporarily near the impact point. In particular, the
crack in specimen No. S101176-H exhibited a prominent S-shape near the impact
point. Similar results are reported in Reference [1] where a high velocity
crack generated by an initially blunt crack* ran into the compression zone
before the stress could redistribute itself in a high tension state expected

from static equilibrium.

RESULTS OF DYNAMIC FINITE ELEMENT ANALYSIS

Two test Nos. S100976-1-H and S101176-H which contained photoelastic
records of the initial stage of impact prior to crack propagation were selected
for dynanic finite element analysis. Recorded tup load with time obtained from
oscilloscope trace is shown in Figures 5 and 6 of test Nos. S100976-1-H and
S101176-H, respectively, with two idealized load-time curves which were used in
dynamic finite element analysis. Also shown in Figures 5 and 6 are the crack tip
positions which were obtained from recorded photoelastic patterns and lite-mike
timings, as functions of time. Crack initiation time was interpolated from this
crack extension versus time relationship. In addition, dynamic photoelastic
patterns of this test showed that the crack wire, which was located at the starter
crack tip, did not break at the instant of crack propagation.

Figures 7 and 8 show the dynamic stress intensity factors, KID’ obtained
numerically and experimentally in test Nos. S100976-1-H and S101176-H. Reasonable
agreements between experimental and numerical dynamic stress intensity factors
were found. Importance of accurate modeling of the impact pulse is underlined

in this numerical analysis where a better correlation between experimental and

* Crack initiated under high KQ.




numerical stress intensity factors might have been obtained if the exact pulse
shape of the load transmitted to the DTT specimen was available.

Figures 9 and 10 show the development of numerical dynamic finite element
analysis from the start of impact to crack initiation in test Nos. S100976-1-H
and S101176-H. The experimentally obtained dynamic stress intensity factor
together with the dynamic stress intensity factor obtained from the computed
dynamic strains at two locations in the crack tip by the method proposed by
Loss [3] are also shown in Figures 9 and 10. Loss' procedure involve§ the deter-
mination of an equivalent static fracture load, which is transmitted to the
three-point bend specimen from experimentally measured dynamic strain at a
suitable location in the vicinity of the crack tip in an actual steel DTT
specimen. The dynamic stress intensity factor, KId’ is then determined from this
equivalent static load using the expression for KId given in ASTM E-399 [8].

The procedure then is to find such proper strain gage location, which is inde-
pendent of the strain rate, for determining the equivalent static fracture load.
Figures 9 and 10 show that strain gage location B will yield Kld by Loss' procedure

[3] with reasonable accuracy.

DISCUSSION

The above dynamic finite element analysis provides a direct output of energies
involved in the dynamic fracture process. Such energies can be used to assess
the engineering significance of Charpy and Izod impact tests which relate the
total external work to the dynamic fracture resistance of the specimen. Although
this total external work has been used extensively for qualitatively assessing the
static and dynamic fracture resistance of materials, no fundamental material
property has been determined from such impact tests. In order to provide further

insight into the energy absorption during such impact testing, computed external




work, total strain energy, total kinetic energy and fracture energy for tho two
DTT specimens Nos. S100976-1-H and S101176-H are plotted in Figures 11 and 12.
These figures show that the kinetic energy and fracture energies constitute
approximately 85% and 6%, respectively, of the external work done. The above
energies were computed up to the time when the crack tip reached the last boundary
element. The relatively large ratio of kinetic energy to the external work
indicates that the use of external work in the DTT type of specimens as a measure
of the fracture resistance may be of doubtful value.

Because of the considerable interest [12] in establishing a relation between
the dynamic fracture toughness, KID’ versus a crack velocity relationship, C,
as a material property, these values are plotted in Figure 13 for the four Homa-
1ite-100 specimens tested. Also shown in this figure are the averaged KID versus
¢ relationship obtained by T. Kobayashi et al at the University of Maryland as
well as results obtained from previously conducted DTT analysis [1]. Considerable
scatter in data obtained in the DTT tests is in contrast to the more cohesive
data points obtained in non-impact specimens [12].

If an average dynamic fracture toughness versus crack velocity relationship
of the familiar I shape is drawn through the experimental data point shown in
Figure 13, such a plot will show that the mir ‘mum resistance to dynamic crack
propagation, Klm’ will be considerably different from the KIm established for

other statically loaded specimens.

CONCLUSION

The dynamic response of dynamic tear test specimen of a brittle material
has been investigated by the use of dynamic photoelasticity and dynamic finite
element analysis and the following conclusions were obtained:

(1) In the dynamic photoelastic investigation, the crack initiation dynamic
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fracture toughness, KId’ was found to be approximately equal to the static
fracture toughness of KIc’

(i1) The minimum dynamic fracture toughness, KIm' was found to be substantially
lower than the static fracture toughness, KIc'
(iii) Loss' procedure of estimating KId from measured dynamic strain gage results

has been found to be effective in calculating de of this brittle material.
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TABLE 1

AVERAGE MECHANICAL AND OPTICAL
PROPERTIES OF HOMALITE-100

ES GPa (ksi) 3.72 (540)
ED GPa (ksi) 4.80 (696)
vs 0.36
Vo 0.36
fcs MPa-mm/fringe (psi-in/fringe 21.5 (123)
fOD MPa-mm/fringe (psi-in/fringe 20.7 (118)
o kg-sec?/m* (1b-sec?/in*) 122 (0.000112)
< m/sec (in/sec) 2590 (102,000)
c, m/sec (in/sec) 1210 (47,800)
cp m/sec (in/sec) 2140 (84,400)
Kic kPa/m (psivin) 415 (378)
NOTE: (i) Subscript S is for static properties
Average strain rate was 1.8x10-3 strain/sec
(ii) Subscript D is for dynamic properties
Average strain rate was 60 strain/sec
(iii) E, v, fy and o are modulus of elasticity, Poissen's ratio,
material stress-optic coefficient and density, respectively.
(iv) ¢y, Co» and c, are dilatational, distortional and plate

wave velocity, respectively.
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